Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors

Identifieur interne : 003B59 ( Main/Repository ); précédent : 003B58; suivant : 003B60

Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors

Auteurs : RBID : Pascal:10-0469900

Descripteurs français

English descriptors

Abstract

Persistent currents are a hallmark of superconductivity in metals. To observe those dissipationless currents in a non-superconducting ring, the circumference of the ring must be short enough so that the phase coherence of the electronic wave functions is preserved around the loop. Recent progress in the fabrication of self-assembled semiconductor quantum rings (SAQRs), which can be filled with only a few (1-2) electrons, has offered the unique possibility to study the magnetic-field-induced oscillations in the persistent current carried by a single electron. In this paper, we discuss similarities and distinctions between the behavior of persistent currents in semiconductor and superconductor samples and give an overview of the recent results for oscillatory persistent currents in SAQRs. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive, as observed in low temperature magnetization measurements on InxGa1-xAs/GaAs SAQRs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0469900

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors</title>
<author>
<name sortKey="Devreese, J T" uniqKey="Devreese J">J. T. Devreese</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>TFVS, Universiteit Antwerpen</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
<orgName type="university">Université d'Anvers</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>COBRA, Eindhoven University of Technology</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 MB Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fomin, V M" uniqKey="Fomin V">V. M. Fomin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>TFVS, Universiteit Antwerpen</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
<orgName type="university">Université d'Anvers</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>COBRA, Eindhoven University of Technology</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 MB Eindhoven</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Dept. of Theoretical Physics. State Univ. of Moldova</s1>
<s2>2009 Chisinau</s2>
<s3>MDA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Dept. of Theoretical Physics. State Univ. of Moldova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute for Integrative Nanosciences, IFW Dresden</s1>
<s2>01069 Dresden</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01069 Dresden</wicri:noRegion>
<wicri:noRegion>IFW Dresden</wicri:noRegion>
<wicri:noRegion>01069 Dresden</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gladilin, V N" uniqKey="Gladilin V">V. N. Gladilin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>TFVS, Universiteit Antwerpen</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
<orgName type="university">Université d'Anvers</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Dept. of Theoretical Physics. State Univ. of Moldova</s1>
<s2>2009 Chisinau</s2>
<s3>MDA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Dept. of Theoretical Physics. State Univ. of Moldova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tempere, J" uniqKey="Tempere J">J. Tempere</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>TFVS, Universiteit Antwerpen</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
<orgName type="university">Université d'Anvers</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Lyman Laboratory of Physics, Harvard University</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cambridge, MA 02138</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0469900</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0469900 INIST</idno>
<idno type="RBID">Pascal:10-0469900</idno>
<idno type="wicri:Area/Main/Corpus">003C03</idno>
<idno type="wicri:Area/Main/Repository">003B59</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4534</idno>
<title level="j" type="abbreviated">Phys., C Supercond.</title>
<title level="j" type="main">Physica. C. Superconductivity</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aharonov-Bohm effect</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Magnetic field effects</term>
<term>Magnetic moments</term>
<term>Magnetization</term>
<term>Oscillations</term>
<term>Persistent currents</term>
<term>Quantum ring</term>
<term>Self-assembled layers</term>
<term>Semiconductor materials</term>
<term>Superconductors</term>
<term>Transport processes</term>
<term>Wave functions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Phénomène transport</term>
<term>Courant persistent</term>
<term>Fonction onde</term>
<term>Effet champ magnétique</term>
<term>Oscillation</term>
<term>Effet Aharonov Bohm</term>
<term>Aimantation</term>
<term>Moment magnétique</term>
<term>Anneau quantique</term>
<term>Semiconducteur</term>
<term>Supraconducteur</term>
<term>Couche autoassemblée</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>InxGa1-xAs</term>
<term>GaAs</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Persistent currents are a hallmark of superconductivity in metals. To observe those dissipationless currents in a non-superconducting ring, the circumference of the ring must be short enough so that the phase coherence of the electronic wave functions is preserved around the loop. Recent progress in the fabrication of self-assembled semiconductor quantum rings (SAQRs), which can be filled with only a few (1-2) electrons, has offered the unique possibility to study the magnetic-field-induced oscillations in the persistent current carried by a single electron. In this paper, we discuss similarities and distinctions between the behavior of persistent currents in semiconductor and superconductor samples and give an overview of the recent results for oscillatory persistent currents in SAQRs. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive, as observed in low temperature magnetization measurements on In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/GaAs SAQRs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4534</s0>
</fA01>
<fA03 i2="1">
<s0>Phys., C Supercond.</s0>
</fA03>
<fA05>
<s2>470</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the Sixth International Conference on Vortex Matter in Nanostructured Superconductors</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DEVREESE (J. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FOMIN (V. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GLADILIN (V. N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TEMPERE (J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MOSHCHALKOV (Victor)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>TFVS, Universiteit Antwerpen</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>COBRA, Eindhoven University of Technology</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Dept. of Theoretical Physics. State Univ. of Moldova</s1>
<s2>2009 Chisinau</s2>
<s3>MDA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute for Integrative Nanosciences, IFW Dresden</s1>
<s2>01069 Dresden</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Lyman Laboratory of Physics, Harvard University</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200 D</s1>
<s2>Leuven 3001</s2>
<s3>BEL</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>848-852</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145C</s2>
<s5>354000193188570320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0469900</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. C. Superconductivity</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Persistent currents are a hallmark of superconductivity in metals. To observe those dissipationless currents in a non-superconducting ring, the circumference of the ring must be short enough so that the phase coherence of the electronic wave functions is preserved around the loop. Recent progress in the fabrication of self-assembled semiconductor quantum rings (SAQRs), which can be filled with only a few (1-2) electrons, has offered the unique possibility to study the magnetic-field-induced oscillations in the persistent current carried by a single electron. In this paper, we discuss similarities and distinctions between the behavior of persistent currents in semiconductor and superconductor samples and give an overview of the recent results for oscillatory persistent currents in SAQRs. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive, as observed in low temperature magnetization measurements on In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/GaAs SAQRs.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C23</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70D78N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Courant persistent</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Persistent currents</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Fonction onde</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Wave functions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Oscillation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Oscillations</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet Aharonov Bohm</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Aharonov-Bohm effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Anneau quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quantum ring</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Anillo cuántico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Supraconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Superconductors</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>305</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Conference on Vortex Matter in Nanostructured Superconductors (VORTEX VI)</s1>
<s2>6</s2>
<s3>Rhodes GRC</s3>
<s4>2009-09-17</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003B59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0469900
   |texte=   Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024